Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Orthop Res ; 42(4): 843-854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37807082

RESUMO

This study aims at assessing approaches for generating high-resolution magnetic resonance imaging- (MRI-) based synthetic computed tomography (sCT) images suitable for orthopedic care using a deep learning model trained on low-resolution computed tomography (CT) data. To that end, paired MRI and CT data of three anatomical regions were used: high-resolution knee and ankle data, and low-resolution hip data. Four experiments were conducted to investigate the impact of low-resolution training CT data on sCT generation and to find ways to train models on low-resolution data while providing high-resolution sCT images. Experiments included resampling of the training data or augmentation of the low-resolution data with high-resolution data. Training sCT generation models using low-resolution CT data resulted in blurry sCT images. By resampling the MRI/CT pairs before the training, models generated sharper images, presumably through an increase in the MRI/CT mutual information. Alternatively, augmenting the low-resolution with high-resolution data improved sCT in terms of mean absolute error proportionally to the amount of high-resolution data. Overall, the morphological accuracy was satisfactory as assessed by an average intermodal distance between joint centers ranging from 0.7 to 1.2 mm and by an average intermodal root-mean-squared distances between bone surfaces under 0.7 mm. Average dice scores ranged from 79.8% to 87.3% for bony structures. To conclude, this paper proposed approaches to generate high-resolution sCT suitable for orthopedic care using low-resolution data. This can generalize the use of sCT for imaging the musculoskeletal system, paving the way for an MR-only imaging with simplified logistics and no ionizing radiation.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Osso e Ossos , Extremidade Inferior , Processamento de Imagem Assistida por Computador/métodos
2.
Eur J Med Genet ; 66(11): 104851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37758161

RESUMO

Patients with skeletal dysplasias usually experience health related problems in different parts and systems of the body. Therefore, they face challenges in multiple domains of functioning and health. To address these different domains, interdisciplinary care should be the standard for these patients. The basic algorithm of interdisciplinary care can be similar for patients with different skeletal dysplasias, as many of the problems and needs are generic within different age groups. With increased age the domains in which patients with skeletal dysplasia face challenges will change and the focus and frequency of the interdisciplinary care should change accordingly. Thorough understanding of the specific characteristics of different skeletal dysplasias is required to create an individualized efficient interdisciplinary screening and care program. This paper presents the current structure and rationale of the interdisciplinary screening and care program of the skeletal dysplasia expert center of the University Medical Center Utrecht in the Netherlands. It is presented here, tailored to osteogenesis imperfecta, but the structure of the program is generic for all skeletal dysplasias.


Assuntos
Doenças do Desenvolvimento Ósseo , Osteocondrodisplasias , Osteogênese Imperfeita , Humanos , Longevidade , Osteocondrodisplasias/genética , Osteocondrodisplasias/terapia , Osteocondrodisplasias/diagnóstico , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/terapia , Osteogênese Imperfeita/diagnóstico , Países Baixos , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/terapia , Doenças do Desenvolvimento Ósseo/diagnóstico
3.
Front Vet Sci ; 10: 1160177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152693

RESUMO

Hip dysplasia (HD) is a common orthopedic problem in young dogs. To decrease the laxity of the hip joint related to HD, the surgical treatments are recommended to increase femoral head coverage. ACEtabular rim eXtension (ACE-X) using a personalized 3-dimensional printed titanium shelf implant is a new surgical treatment to increase femoral head coverage and decrease laxity of the dysplastic hip joint, however, the efficacy is less know. Client-owned dogs older than 6 months with clinical signs of coxofemoral joint subluxation and radiographic evidence of HD with no or mild osteoarthritis (OA) were included. The Norberg angle (NA), linear percentage of femoral head overlap (LFO), and percentage of femoral head coverage (PC) were investigated radiographically and with computed tomography (CT) before and after surgery. OA was graded (scores 0-3) according to the maximum osteophyte size measured on CT. In addition, joint laxity (Ortolani) test results, gait analysis, and the Helsinki chronic pain index (HCPI) questionnaire were obtained at preoperative, immediately postoperative and at 1.5- and 3-month evaluations. Acetabular rim extension was performed in 61 hips of 34 dogs; NA, LFO, and PC were significantly higher immediately postoperatively and at the 1.5- and 3-month follow-up examinations compared with preoperative values (p < 0.05). Osteophyte size gradually increased over time (p < 0.05). The OA score significantly increased between preoperatively and directly postoperatively, and between preoperatively and at 3-month follow-up (p < 0.05). The laxity test normalized in 59 out of 61 hips after surgery, and the HCPI questionnaire showed that the pain score decreased significantly at 1.5 and 3 months, postoperatively. The force plate showed no significant improvement during the 3 months follow-up. Although pain reduction by the implant was unclear in short-term results, a personalized shelf implant significantly increased femoral head coverage and eliminated subluxation of the dysplastic hip joint. Further studies are required to study the long-term efficacy of gait, chronic pain, and progression of osteoarthritis.

4.
Int J Comput Assist Radiol Surg ; 18(12): 2307-2318, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37219804

RESUMO

INTRODUCTION: The use of MRI scans for pre-operative surgical planning of forearm osteotomies provides additional information of joint cartilage and soft tissue structures and reduces radiation exposure in comparison with the use of CT scans. In this study, we investigated whether using 3D information obtained from MRI with and without cartilage information leads to a different outcome of pre-operative planning. METHODS: Bilateral CT and MRI scans of the forearms of 10 adolescent and young adult patients with a unilateral bone deformation were acquired in a prospective study. The bones were segmented from CT and MRI, and cartilage only from MRI. The deformed bones were virtually reconstructed, by registering the joint ends to the healthy contralateral side. An optimal osteotomy plane was determined that minimized the distance between the resulting fragments. This process was performed in threefold: using the CT and MRI bone segmentations, and the MRI cartilage segmentations. RESULTS: Comparison of bone segmentation from MRI and CT scan resulted in a 0.95 ± 0.02 Dice Similarity Coefficient and 0.42 ± 0.07 mm Mean Absolute Surface Distance. All realignment parameters showed excellent reliability across the different segmentations. However, the mean differences in translational realignment between CT and MRI bone segmentations (4.5 ± 2.1 mm) and between MRI bone and MRI bone and cartilage segmentations (2.8 ± 2.1 mm) were shown to be clinically and statistically significant. A significant positive correlation was found between the translational realignment and the relative amount of cartilage. CONCLUSION: This study indicates that although bone realignment remained largely similar when using MRI with and without cartilage information compared to using CT, the small differences in segmentation could induce statistically and clinically significant differences in the osteotomy planning. We also showed that endochondral cartilage might be a non-negligible factor when planning osteotomies for young patients.


Assuntos
Cartilagem Articular , Antebraço , Adulto Jovem , Adolescente , Humanos , Antebraço/cirurgia , Reprodutibilidade dos Testes , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Osteotomia/métodos
5.
J Bone Joint Surg Am ; 105(9): 700-712, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36947661

RESUMO

BACKGROUND: Preoperative planning of lower-limb realignment surgical procedures necessitates the quantification of alignment parameters by using landmarks placed on medical scans. Conventionally, alignment measurements are performed on 2-dimensional (2D) standing radiographs. To enable fast and accurate 3-dimensional (3D) planning of orthopaedic surgery, automatic calculation of the lower-limb alignment from 3D bone models is required. The goal of this study was to develop, validate, and apply a method that automatically quantifies the parameters defining lower-limb alignment from computed tomographic (CT) scans. METHODS: CT scans of the lower extremities of 50 subjects were both manually and automatically segmented. Thirty-two manual landmarks were positioned twice on the bone segmentations to assess intraobserver reliability in a subset of 20 subjects. The landmarks were also positioned automatically using a shape-fitting algorithm. The landmarks were then used to calculate 25 angles describing the lower-limb alignment for all 50 subjects. RESULTS: The mean absolute difference (and standard deviation) between repeat measurements using the manual method was 2.01 ± 1.64 mm for the landmark positions and 1.05° ± 1.48° for the landmark angles, whereas the mean absolute difference between the manual and fully automatic methods was 2.17 ± 1.37 mm for the landmark positions and 1.10° ± 1.16° for the landmark angles. The manual method required approximately 60 minutes of manual interaction, compared with 12 minutes of computation time for the fully automatic method. The intraclass correlation coefficient showed good to excellent reliability between the manual and automatic assessments for 23 of 25 angles, and the same was true for the intraobserver reliability in the manual method. The mean for the 50 subjects was within the expected range for 18 of the 25 automatically calculated angles. CONCLUSIONS: We developed a method that automatically calculated a comprehensive range of 25 measurements that defined lower-limb alignment in considerably less time, and with differences relative to the manual method that were comparable to the differences between repeated manual assessments. This method could thus be used as an efficient alternative to manual assessment of alignment. LEVEL OF EVIDENCE: Diagnostic Level III . See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Extremidade Inferior , Tomografia Computadorizada por Raios X , Humanos , Reprodutibilidade dos Testes , Extremidade Inferior/diagnóstico por imagem , Radiografia , Algoritmos
6.
Biomolecules ; 13(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830650

RESUMO

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that causes bone fragility due to pathogenic variants in genes responsible for the synthesis of type I collagen. Efforts to classify the high clinical variability in OI led to the Sillence classification. However, this classification only partially takes into account extraskeletal manifestations and the high genetic variability. Little is known about the relation between genetic variants and phenotype as of yet. The aim of the study was to create a clinically relevant genetic stratification of a cohort of 675 Dutch OI patients based on their pathogenic variant types and to provide an overview of their respective medical care demands. The clinical records of 675 OI patients were extracted from the Amsterdam UMC Genome Database and matched with the records from Statistics Netherlands (CBS). The patients were categorized based on their harbored pathogenic variant. The information on hospital admissions, outpatient clinic visits, medication, and diagnosis-treatment combinations (DTCs) was compared between the variant groups. OI patients in the Netherlands appear to have a higher number of DTCs, outpatient clinic visits, and hospital admissions when compared to the general Dutch population. Furthermore, medication usage seems higher in the OI cohort in comparison to the general population. The patients with a COL1A1 or COL1A2 dominant negative missense non-glycine substitution appear to have a lower health care need compared to the other groups, and even lower than patients with COL1A1 or COL1A2 haploinsufficiency. It would be useful to include the variant type in addition to the Sillence classification when categorizing a patient's phenotype.


Assuntos
Osteogênese Imperfeita , Humanos , Cadeia alfa 1 do Colágeno Tipo I , Mutação , Fenótipo
7.
Eur J Pediatr ; 182(2): 501-511, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36472650

RESUMO

Osteoporosis is a condition of increased bone fragility associated with fractures. Apart from primary genetic osteoporotic conditions, secondary osteoporosis in children is being increasingly recognized. As a result, there is growing interest in its prevention and treatment. Important goals of care are to prevent fractures, increase bone mass and trabecular and cortical thickness, reshape vertebral fractures, prevent (or correct) skeletal deformities, and improve mobility, independence, and quality of life. Secondary pediatric osteoporosis is often of multifactorial origin since affected children frequently have more than one acquired factor that is detrimental to bone health. Typical conditions causing osteoporosis are leukemias, progressive muscle or neurological disorders, as well as chronic inflammatory conditions and their treatment. Management of children with osteoporosis involves a multidisciplinary team involving pediatric experts from different subspecialties. With regard to prevention and early intervention, it is important to provide optimal management of any underlying systemic conditions including avoidance, or dose-reduction, of osteotoxic medications. Basic supporting life-style measures, such as appropriate nutrition, including adequate calcium intake and vitamin D, and physical activity are recommended, where possible. When pediatric treatment criteria for osteoporosis are met, antiresorptive drugs constitute the first pharmacological line treatment. CONCLUSION: This clinical review focuses on the prevention, treatment, and follow-up of children with, or at risk of developing, osteoporosis and the transition from pediatric to adult care. WHAT IS KNOWN: • Osteoporosis and associated fractures can cause significant morbidity and reduce the quality of life. • The developing skeleton has huge potential for recovery and reshaping, thus early detection of fractures, assessment of recovery potential, and treatment of children with osteoporosis can prevent future fractures, deformities, and scoliosis, improve function and mobility, and reduce pain. WHAT IS NEW: • Osteoporosis in children and adolescents requires a multidisciplinary approach with a thorough assessment of recovery potential, and indication for therapy should be personalized. • Although bisphosphonates still represent the drug most commonly used to increase bone mass, improve mobility, and reduce pain and recurrence of fractures, new agents are being developed and could be beneficial in children with specific conditions.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Transição para Assistência do Adulto , Adulto , Criança , Adolescente , Humanos , Qualidade de Vida , Osteoporose/diagnóstico , Osteoporose/etiologia , Osteoporose/terapia , Conservadores da Densidade Óssea/uso terapêutico , Vitamina D/uso terapêutico , Densidade Óssea , Difosfonatos/uso terapêutico
8.
Cartilage ; 13(4): 59-65, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36305650

RESUMO

OBJECTIVE: Visual inspection of the lower limb is often part of standard clinical practice during a physical examination at the outpatient clinic. This study aims to investigate how reliable visual inspections are in terms of detecting lower limb malalignments without additional tools and physical examinations. DESIGN: This study enrolled 50 patients. Each patient underwent a whole leg radiograph (WLR); in addition, a standardized digital photograph was taken of the lower limbs. Four persons (different experience levels) visually rated the digital photograph twice (unaware of the hip knee angle [HKA] on the WLR) and placed them in the category: severe valgus (>5°); moderate valgus (2°-5°); neutral, moderate varus (2°-5°); and severe varus (>5°). Visual ratings were compared with the measured HKA on WLRs for correlation using Spearman's rho. Linear ordinal regression models with significance when P < 0.05 were used to test whether body mass index (BMI), age, gender, and HKA were possible risk factors for incorrect visual HKA assessment. RESULTS: Spearman's rho between the visual assessment and measured HKA on the WLR was moderate with 0.478 (P < 0.01). Women had an increased odds ratio of 3.7 (P = 0.001) for incorrect visual assessment. Higher HKA also increased the odds ratio for erroneous visual assessment with 1.4 (P = 0.003). BMI and age did not significantly increase the odds of erroneous visual leg axis assessments in this study. CONCLUSIONS: Visual assessment of the lower limb alignment does not provide clinically relevant information. Lower limb malalignment diagnoses cannot be performed using only a visual inspection. Physical examination tests and radiographical assessments are advised. LEVEL OF EVIDENCE: Diagnostic level II.


Assuntos
Osteoartrite do Joelho , Humanos , Feminino , Estudos Retrospectivos , Articulação do Joelho/diagnóstico por imagem , Extremidade Inferior , Exame Físico
10.
J Orthop Res ; 40(12): 2894-2907, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35239226

RESUMO

Semantic segmentation of bone from lower extremity computerized tomography (CT) scans can improve and accelerate the visualization, diagnosis, and surgical planning in orthopaedics. However, the large field of view of these scans makes automatic segmentation using deep learning based methods challenging, slow and graphical processing unit (GPU) memory intensive. We investigated methods to more efficiently represent anatomical context for accurate and fast segmentation and compared these with state-of-the-art methodology. Six lower extremity bones from patients of two different datasets were manually segmented from CT scans, and used to train and optimize a cascaded deep learning approach. We varied the number of resolution levels, receptive fields, patch sizes, and number of V-net blocks. The best performing network used a multi-stage, cascaded V-net approach with 1283 -643 -323 voxel patches as input. The average Dice coefficient over all bones was 0.98 ± 0.01, the mean surface distance was 0.26 ± 0.12 mm and the 95th percentile Hausdorff distance 0.65 ± 0.28 mm. This was a significant improvement over the results of the state-of-the-art nnU-net, with only approximately 1/12th of training time, 1/3th of inference time and 1/4th of GPU memory required. Comparison of the morphometric measurements performed on automatic and manual segmentations showed good correlation (Intraclass Correlation Coefficient [ICC] >0.8) for the alpha angle and excellent correlation (ICC >0.95) for the hip-knee-ankle angle, femoral inclination, femoral version, acetabular version, Lateral Centre-Edge angle, acetabular coverage. The segmentations were generally of sufficient quality for the tested clinical applications and were performed accurately and quickly compared to state-of-the-art methodology from the literature.


Assuntos
Osso e Ossos , Tomografia Computadorizada por Raios X , Humanos , Extremidade Inferior/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
11.
Acta Orthop ; 93: 296-302, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129201

RESUMO

BACKGROUND AND PURPOSE: The Chiari osteotomy was a regular treatment for developmental hip dysplasia before it became mostly reserved as a salvage therapy. However, the long-term survival of the Chiari osteotomy has not been systematically investigated. We investigated the survival time of the Chiari osteotomy until conversion to total hip arthroplasty (THA) in patients with primary hip dysplasia, and factors which correlated with survival, complications, and the improvement measured in radiographic parameters. PATIENTS AND METHODS: Studies were included when describing patients (> 16 years) with primary hip dysplasia treated with a Chiari osteotomy procedure with 8 years' follow-up. Data on patient characteristics, indications, complications, radiographic parameters, and survival time (endpoint: conversion to THA) were extracted. RESULTS: 8 studies were included. The average postoperative center-edge angle, acetabular head index, and Sharp angle were generally restored within the target range. 3 studies reported Kaplan-Meier survival rates varying from 96% at 10 years to 72% at 20 years' follow-up. Negative survival factors were high age at intervention and pre-existing advanced preoperative osteoarthritis. Moreover, reported complications ranged between 0% and 28.3 %. INTERPRETATION: The Chiari osteotomy has high reported survival rates and is capable of restoring radiographic hip parameters to healthy values. When carefully selected by young age, and a low osteoarthritis score, patients benefit from the Chiari osteotomy with satisfactory survival rates. The position of the Chiari osteotomy in relation to the periacetabular osteotomies should be further (re-)explored.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Osteoartrite do Quadril , Osteoartrite , Acetábulo/cirurgia , Adolescente , Adulto , Seguimentos , Luxação do Quadril/cirurgia , Luxação Congênita de Quadril/complicações , Luxação Congênita de Quadril/cirurgia , Humanos , Osteoartrite/etiologia , Osteoartrite do Quadril/complicações , Osteotomia/métodos , Estudos Retrospectivos , Resultado do Tratamento
12.
Sci Rep ; 12(1): 3032, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194117

RESUMO

The concept of a novel patient-specific 3D-printed shelf implant should be evaluated in a relevant large animal model with hip dysplasia. Therefore, three dogs with radiographic bilateral hip dysplasia and a positive subluxation test underwent unilateral acetabular augmentation with a 3D-printed dog-specific titanium implant. The contralateral side served as control. The implants were designed on CT-based pelvic bone segmentations and extended the dysplastic acetabular rim to increase the weight bearing surface without impairing the range of motion. Outcome was assessed by clinical observation, manual subluxation testing, radiography, CT, and gait analysis from 6 weeks preoperatively until termination at 26 weeks postoperatively. Thereafter, all hip joints underwent histopathological examination. The implantation and recovery from surgery was uneventful. Clinical subluxation tests at the intervention side became negative. Imaging showed medialization of the femoral head at the intervention side and the mean (range) CE-angle increased from 94° (84°-99°) preoperative to 119° (117°-120°) postoperative. Gait analysis parameters returned to pre-operative levels after an average follow-up of 6 weeks. Histology showed a thickened synovial capsule between the implant and the femoral head without any evidence of additional damage to the articular cartilage compared to the control side. The surgical implantation of the 3D shelf was safe and feasible. The patient-specific 3D-printed shelf implants restored the femoral head coverage and stability of dysplastic hips without complications. The presented approach holds promise to treat residual hip dysplasia justifying future veterinary clinical trials to establish clinical effectiveness in a larger cohort to prepare for translation to human clinic.


Assuntos
Luxação do Quadril/diagnóstico por imagem , Luxação do Quadril/terapia , Impressão Tridimensional , Próteses e Implantes , Desenho de Prótese/métodos , Acetábulo , Animais , Modelos Animais de Doenças , Cães , Estudos de Viabilidade , Marcha , Luxação do Quadril/fisiopatologia , Humanos , Ossos Pélvicos , Segurança , Titânio , Tomografia Computadorizada por Raios X/métodos
13.
Radiology ; 303(2): 425-432, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35076302

RESUMO

Background The current widely applied Graf classification used on US images for developmental dysplasia of the hip in infants does not enable prediction of the development and outcome of well-centered stable dysplastic hips (Graf type II). Purpose To use statistical shape modeling on US images to identify acetabular shape characteristics of Graf type II hips, which enable prediction of the development of Graf type II hips, and to identify which hips benefit from Pavlik harness treatment. Materials and Methods In this secondary analysis of a prospective multicenter randomized trial on treatment of 104 infants aged 3-4 months with Graf type IIb or IIc hip dysplasia conducted between 2009 and 2015, a statistical shape model was developed on baseline US images. With multivariable logistic regression adjusted for infant sex and treatment (Pavlik harness treatment vs active observation), shape modes were correlated with the outcomes of persistent hip dysplasia on US images (α angle <60°) after 12-week follow-up and residual hip dysplasia on pelvic radiographs (Tönnis classification: acetabular index greater than 2 standard deviations) around 1 year of age. An interaction term (treatment with mode) was used to investigate if this result depended on treatment. Results Baseline US images were available in 97 infants (mean age, 3.37 years ± 0.43 [standard deviation]; 89 [92%] girls; 90 cases of Graf type IIb hip dysplasia; 52 cases treated with Pavlik harness). Shape modes 2 and 3 of the statistical shape modeling were associated with persistent hip dysplasia on US images (odds ratio [OR] = 0.43; P = .007 and OR = 2.39; P = .02, respectively). Mode 2 was also associated with residual hip dysplasia on pelvic radiographs (OR = 0.09; P = .002). The interaction term remained significant after multivariable analysis, indicating that Pavlik harness treatment was beneficial in patients with negative mode 2 values (OR = 12.46; P = .01). Conclusion Statistical shape modeling of US images of infants with Graf type II dysplastic hips predicted which hips developed to normal or remained dysplastic and identified hips that benefited from Pavlik harness treatment. © RSNA, 2022.


Assuntos
Luxação Congênita de Quadril , Luxação do Quadril , Pré-Escolar , Feminino , Luxação Congênita de Quadril/diagnóstico por imagem , Luxação Congênita de Quadril/terapia , Articulação do Quadril/diagnóstico por imagem , Humanos , Lactente , Masculino , Aparelhos Ortopédicos , Estudos Prospectivos , Resultado do Tratamento , Ultrassonografia
14.
J Orthop Res ; 40(4): 954-964, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34191351

RESUMO

This study evaluated the accuracy of synthetic computed tomography (sCT), as compared to CT, for the 3D assessment of the hip morphology. Thirty male patients with asymptomatic hips, referred for magnetic resonance (MR) imaging and CT, were included in this retrospective study. sCT images were generated from three-dimensional radiofrequency-spoiled T1-weighted multi-echo gradient-echo MR images using a commercially available deep learning-enabled software and were compared with CT images through mean error and surface distance computation and by means of eight clinical morphometric parameters relevant for hip care. Parameters included center-edge angle (CEA), sharp angle, acetabular index, extrusion index, femoral head center-to-midline distance, acetabular version (AV), and anterior and posterior acetabular sector angles. They were measured by two senior orthopedic surgeons and a radiologist in-training on CT and sCT images. The reliability and agreement of CT- and sCT-based measurements were assessed using intraclass correlation coefficients (ICCs) for absolute agreement, Bland-Altman plots, and two one-sided tests for equivalence. The surface distance between CT- and sCT-based bone models were on average submillimeter. CT- and sCT-based measurements showed moderate to excellent interobserver and intraobserver correlation (0.56 < ICC < 0.99). In particular, the inter/intraobserver agreements were good for AV (ICC > 0.75). For CEA, the intraobserver agreement was good (ICC > 0.75) and the interobserver agreement was moderate (ICC > 0.69). Limits of agreements were similar between intraobserver CT and intermodal measurements. All measurements were found statistically equivalent, with average intermodal differences within the intraobserver limits of agreement. In conclusion, sCT and CT were equivalent for the assessment of the hip joint bone morphology.


Assuntos
Articulação do Quadril , Imageamento por Ressonância Magnética , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/cirurgia , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
15.
Microsc Res Tech ; 85(2): 469-486, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34490967

RESUMO

Bone is a complex natural material with a complex hierarchical multiscale organization, crucial to perform its functions. Ultrastructural analysis of bone is crucial for our understanding of cell to cell communication, the healthy or pathological composition of bone tissue, and its three-dimensional (3D) organization. A variety of techniques has been used to analyze bone tissue. This article describes a combined approach of optical, scanning electron, and transmission electron microscopy for the ultrastructural analysis of bone from the nanoscale to the macroscale, as illustrated by two pathological bone tissues. By following a top-down approach to investigate the multiscale organization of pathological bones, quantitative estimates were made in terms of calcium content, nearest neighbor distances of osteocytes, canaliculi diameter, ordering, and D-spacing of the collagen fibrils, and the orientation of intrafibrillar minerals which enable us to observe the fine structural details. We identify and discuss a series of two-dimensional (2D) and 3D imaging techniques that can be used to characterize bone tissue. By doing so we demonstrate that, while 2D imaging techniques provide comparable information from pathological bone tissues, significantly different structural details are observed upon analyzing the pathological bone tissues in 3D. Finally, particular attention is paid to sample preparation for and quantitative processing of data from electron microscopic analysis.


Assuntos
Osso e Ossos , Imageamento Tridimensional , Elétrons , Microscopia Eletrônica de Transmissão
16.
Phys Med Biol ; 66(17)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34298532

RESUMO

Purpose.To develop a method that enables computed tomography (CT) to magnetic resonance (MR) image registration of complex deformations typically encountered in rotating joints such as the knee joint.Methods.We propose a workflow, denoted quaternion interpolated registration (QIR), consisting of three steps, which makes use of prior knowledge of tissue properties to initialise deformable registration. In the first step, the rigid skeletal components were individually registered. Next, the deformation of soft tissue was estimated using a dual quaternion-based interpolation method. In the final step, the registration was fine-tuned with a rigidity-constrained deformable registration step. The method was applied to paired, unregistered CT and MR images of the knee of 92 patients. It was compared to registration using B-Splines (BS) and B-Splines with a rigidity penalty (BSRP). Registration accuracy was evaluated using mutual information, and by calculating Dice similarity coefficient (DSC), mean absolute surface distance (MASD) and 95th percentile Hausdorff distance (HD95) on bone, and DSC on water and fat dominated tissue. To evaluate the rigidity of bone in the registration, the Jacobian determinant (JD) was calculated.Results.QIR achieved improved results with 0.93, 0.76 mm and 1.88 mm on the DSC, MASD and HD95 metrics on bone, compared to 0.87, 1.40 mm and 4.99 mm for method and 0.87, 1.40 mm and 3.56 mm for the BSRP method. The average DSC of water and fat was 0.77 and 0.86 for the QIR, 0.75 and 0.84 for BS and 0.74 and 0.84 for BSRP. Comparison of the median JD and median interquartile (IQR) ranges of the JD indicated that the QIR (1.00 median, 0.03 IQR) resulted in higher rigidity in the rigid skeletal tissues compared to the BS (0.98 median, 0.19 IQR) and BSRP (1.00 median, 0.05 IQR) methods.Conclusion.This study showed that QIR could improve the outcome of complex registration problems, encountered in joints involving rigid and non-rigid bodies such as occur in the knee, as compared to a conventional registration approach.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Articulação do Joelho/diagnóstico por imagem
17.
Acta Orthop ; 92(5): 608-614, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34180749

RESUMO

Background and purpose - Involvement of patient organizations is steadily increasing in guidelines for treatment of various diseases and conditions for better care from the patient's viewpoint and better comparability of outcomes. For this reason, the Osteogenesis Imperfecta Federation Europe and the Care4BrittleBones Foundation convened an interdisciplinary task force of 3 members from patient organizations and 12 healthcare professionals from recognized centers for interdisciplinary care for children and adults with osteogenesis imperfecta (OI) to develop guidelines for a basic roadmap to surgery in OI.Methods - All information from 9 telephone conferences, expert consultations, and face-to-face meetings during the International Conference for Quality of Life for Osteogenesis Imperfecta 2019 was used by the task force to define themes and associated recommendations.Results - Consensus on recommendations was reached within 4 themes: the interdisciplinary approach, the surgical decision-making conversation, surgical technique guidelines for OI, and the feedback loop after surgery.Interpretation - The basic guidelines of this roadmap for the interdisciplinary approach to surgical care in children and adults with OI is expected to improve standardization of clinical practice and comparability of outcomes across treatment centers.


Assuntos
Tomada de Decisão Clínica , Osteogênese Imperfeita/cirurgia , Equipe de Assistência ao Paciente , Procedimentos de Cirurgia Plástica/métodos , Humanos , Qualidade de Vida , Inquéritos e Questionários
18.
3D Print Med ; 7(1): 13, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33914209

RESUMO

BACKGROUND: Three-dimensional (3D)-printed saw guides are frequently used to optimize osteotomy results and are usually designed based on computed tomography (CT), despite the radiation burden, as radiation-less alternatives like magnetic resonance imaging (MRI) have inferior bone visualization capabilities. This study investigated the usability of MR-based synthetic-CT (sCT), a novel radiation-less bone visualization technique for 3D planning and design of patient-specific saw guides. METHODS: Eight human cadaveric lower arms (mean age: 78y) received MRI and CT scans as well as high-resolution micro-CT. From the MRI scans, sCT were generated using a conditional generative adversarial network. Digital 3D bone surface models based on the sCT and general CT were compared to the surface model from the micro-CT that was used as ground truth for image resolution. From both the sCT and CT digital bone models saw guides were designed and 3D-printed in nylon for one proximal and one distal bone position for each radius and ulna. Six blinded observers placed these saw guides as accurately as possible on dissected bones. The position of each guide was assessed by optical 3D-scanning of each bone with positioned saw guide and compared to the preplanning. Eight placement errors were evaluated: three translational errors (along each axis), three rotational errors (around each axis), a total translation (∆T) and a total rotation error (∆R). RESULTS: Surface models derived from micro-CT were on average smaller than sCT and CT-based models with average differences of 0.27 ± 0.30 mm for sCT and 0.24 ± 0.12 mm for CT. No statistically significant positioning differences on the bones were found between sCT- and CT-based saw guides for any axis specific translational or rotational errors nor between the ∆T (p = .284) and ∆R (p = .216). On Bland-Altman plots, the ∆T and ∆R limits of agreement (LoA) were within the inter-observer variability LoA. CONCLUSIONS: This research showed a similar error for sCT and CT digital surface models when comparing to ground truth micro-CT models. Additionally, the saw guide study showed equivalent CT- and sCT-based saw guide placement errors. Therefore, MRI-based synthetic CT is a promising radiation-less alternative to CT for the creation of patient-specific osteotomy surgical saw guides.

19.
J Bone Joint Surg Am ; 103(6): 489-496, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33443965

RESUMO

BACKGROUND: The introduction of stem cell transplantation has improved life expectancy and cognitive outcome in patients with mucopolysaccharidosis I, but this condition remains associated with substantial residual disease in several parts of the body. Many patients have hip dysplasia with progressive medial flattening of the femoral head. Quantitative evidence on the effect of surgery on remodeling to sphericity of flattened femoral heads is lacking. In the present study, we used statistical shape modeling to quantify the effect of hip surgery on the sphericity of the femoral head in patients with mucopolysaccharidosis I. METHODS: We performed a retrospective case control study involving a series of 23 patients with hip dysplasia due to mucopolysaccharidosis I. Surgery was not offered to the first 11 children (control group). Following a change in treatment protocol, the next 12 children underwent bilateral proximal femoral varus derotation osteotomy and Pemberton osteotomy for the treatment of acetabular dysplasia with progressive femoral head flattening (surgery group). The surgery and control groups were compared with a reference group of patients with normal hips. Statistical shape modeling was used to quantify the shape of the femoral head (i.e., flattening and/or roundness of the epiphysis). RESULTS: The mean age at the time of stem cell transplantation in the surgery and control groups was comparable (1.2 years). The mean age at the time of surgical intervention was 5.5 years, and mean duration of postoperative follow-up was 3.3 years. Statistical shape modeling showed variations within the total group in terms of medial indentation, width, height, and sphericity of the femoral heads. In contrast to the progressive femoral head flattening in the control group, the surgery group showed improvement of the sphericity of the femoral head after surgery. The overall shape characteristics of the femoral head in the surgery group were similar to those of the reference group of patients with normal hips. CONCLUSIONS: To our knowledge, this is the first study in patients with mucopolysaccharidosis I that has shown quantitative remodeling of the dysplastic, flattened femoral head to normal sphericity after increasing containment of the femoral head. LEVEL OF EVIDENCE: Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Cabeça do Fêmur/cirurgia , Articulação do Quadril/cirurgia , Mucopolissacaridose I/cirurgia , Osteotomia/métodos , Adolescente , Fatores Etários , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos , Transplante de Células-Tronco , Resultado do Tratamento
20.
Front Vet Sci ; 8: 791434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977223

RESUMO

Hip dysplasia (HD) is common in both humans and dogs. This interconnection is because humans and dogs descended from a common ancestor and therefore have a similar anatomy at micro- and macroscopic levels. Furthermore, dogs are the animals of choice for testing new treatments for human hip dysplasia and orthopedic surgery in general. However, little literature exists comparing HD between the two species. Therefore, the aim of this review is to describe the anatomy, etiology, pathogenesis, diagnostics, and treatment of HD in humans and dogs. HD as an orthopedic condition has many common characteristics in terms of etiology and pathogenesis and most of the differences can be explained by the evolutionary differences between dogs and humans. Likewise, the treatment of HD shows many commonalities between humans and dogs. Conservative treatment and surgical interventions such as femoral osteotomy, pelvic osteotomy and total hip arthroplasty are very similar between humans and dogs. Therefore, future integration of knowledge and experiences for HD between dogs and humans could be beneficial for both species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...